Small Business Innovation Research/Small Business Tech Transfer

# Computations of Separated High-Enthalpy Hypersonic Flows: Development of RANS and Variable-Resolution PANS Approaches, Phase I



Completed Technology Project (2011 - 2011)

#### **Project Introduction**

We propose the development of a high fidelity computational approach for unsteady calculations of strongly separated non-equilibrium high-enthalpy hypersonic flows. The goal is to integrate the now proven partially-averaged Navier-Stokes (PANS) method for unsteady flow simulations with the most advanced closure models for compressibility, high-enthalpy (flow thermodynamics coupling) and non-equilibrium (flow - chemistry coupling) effects. The PANS model has been established as a reliable model for computing separation in low and high speed regimes in two recently conclude NASA NRA projects -- 1. RANS and PANS modeling of hypersonic turbulent mixing environment; 2. Modeling of strongly separated flows with the PANS bridging method. The current proposal is to incorporate further hypersonic effect closures into PANS. Physics-based closure models for flowthermochemistry interactions have been under development in Girimaji's group at Texas A&M under AFOSR MURI funding -- Transition and Turbulence modeling in non-thermochemical-equilibrium hypersonic flows. Important closure model building blocks for hypersonic processes are now available from the above fundamental research efforts. The combination of PANS and these advanced high-speed models will lead to a unique capability for computing hypersonic flow separation with ablation, chemistry and compressibility effects. For Phase I, we propose a logical sequence of verification-validation computations to demonstrate the potential of the various individual closures in separated high-speed high-enthalpy flows. While in-house codes are available for the proposed development, we will also consider using any of the NASA codes: USM3D, OVERFLOW, VULCAN or any of the other codes suggested by the grantor. Subsequent work (Phase II) will focus on the assembly of the individual components and development of an unique high-fidelity computational capability for hypersonic vehicle design, testing and development.



Computations of Separated High-Enthalpy Hypersonic Flows: Development of RANS and Variable-Resolution PANS Approaches, Phase I

#### **Table of Contents**

| Project Introduction          | 1 |
|-------------------------------|---|
| Primary U.S. Work Locations   |   |
| and Key Partners              | 2 |
| Project Transitions           | 2 |
| Organizational Responsibility | 2 |
| Project Management            | 2 |
| Technology Maturity (TRL)     | 2 |
| Technology Areas              | 3 |
| Target Destinations           | 3 |



#### Small Business Innovation Research/Small Business Tech Transfer

Computations of Separated High-Enthalpy Hypersonic Flows: Development of RANS and Variable-Resolution PANS Approaches, Phase I



Completed Technology Project (2011 - 2011)

#### **Primary U.S. Work Locations and Key Partners**



| Organizations<br>Performing Work | Role         | Туре     | Location |
|----------------------------------|--------------|----------|----------|
| Frendi Research                  | Lead         | Industry | Madison, |
| Corporation                      | Organization |          | Alabama  |
| Langley Research                 | Supporting   | NASA     | Hampton, |
| Center(LaRC)                     | Organization | Center   | Virginia |

| Primary U.S. Work Locations |          |
|-----------------------------|----------|
| Alabama                     | Virginia |

#### **Project Transitions**

February 2011: Project Start

September 2011: Closed out

#### **Closeout Documentation:**

• Final Summary Chart(https://techport.nasa.gov/file/138058)

# Organizational Responsibility

# Responsible Mission Directorate:

Space Technology Mission Directorate (STMD)

#### **Lead Organization:**

Frendi Research Corporation

#### **Responsible Program:**

Small Business Innovation Research/Small Business Tech Transfer

### **Project Management**

#### **Program Director:**

Jason L Kessler

#### **Program Manager:**

Carlos Torrez

#### **Principal Investigator:**

Kader Frendi

# Technology Maturity (TRL)





Small Business Innovation Research/Small Business Tech Transfer

Computations of Separated High-Enthalpy Hypersonic Flows: Development of RANS and Variable-Resolution PANS Approaches, Phase I



Completed Technology Project (2011 - 2011)

# **Technology Areas**

#### **Primary:**

- TX09 Entry, Descent, and Landing
  - └─ TX09.4 Vehicle Systems
     └─ TX09.4.5 Modeling and
     Simulation for EDL

## **Target Destinations**

The Sun, Earth, The Moon, Mars, Others Inside the Solar System, Outside the Solar System

